Phylogeny of the genus *Garrulus* (Corvidae, Aves) based on mitochondrial marker sequences

Paul Wolf
paul.wolf@nhm-wien.ac.at

MSc Thesis
Supervisor: Elisabeth Haring

The genus *Garrulus* (Brisson, 1760) belonging to the family Corvidae is by most authorities considered to comprise three species. The best-known member of the genus, the Eurasian Jay *Garrulus glandarius* (Linnaeus, 1758) exhibits a complex geographic pattern of morphological variation over its wide old-world distribution area. The major checklists currently recognise between 34 and 40 different subspecies that are variably arranged in five to eight groups. Some of these groups have even been proposed to be treated as full species. In the present study the phylogeny of the genus was investigated based on tissue samples as well as foot pad samples from museum specimens of 91 birds, covering the proposed eight subspecies groups of the *Garrulus glandarius* complex, as well as the two other species in the genus, *Garrulus lanceolatus* and *Garrulus lidhti*. Phylogenetic trees constructed with 1300 bp sequences of the mitochondrial control region revealed a division into at least four main lineages within the *G. glandarius* complex: (1) “japonicus group”, (2) “brandtii group”, a (3) Southeast Asian clade and a (4) western clade. The two last lineages turned out to be further subdivided into subclades mostly corresponding to the morphologically determined subspecies groups. Additionally, two insular subspecies *taivanus* from Taiwan and *glaszneri* from Cyprus proved to be very distinct mitochondrial lineages. Furthermore, the results provide indication for hybridisation between representatives of subspecies groups.